Post:
#877295 Date:21.12.2024 (19:28) ...
Предлагается источник электрической энергии, основанный на использовании контактной разности потенциалов между металлами и полупроводниками в условиях термодинамического равновесия. Система представлена в виде гексагональной топологии, состоящей из множества идентичных электрических контуров, соединенных последовательно-параллельно. Каждый контур включает в себя проводники с контактной разностью потенциалов (например, нихром и константан), а также полупроводники. Контуры связаны общим проводником, образуя структуру, аналогичную природной сотовой структуре. Один из выводов системы заземлен.
Электрическая схема выполнена по сотовой схеме с использованием структуры в виде гексагональной топологии (множества шестигранников) с узловыми точками контактных разностей потенциалов 3-х материалов – константан, нихром и полупроводник. Каждая узловая точка гексагональной топологии формирует контактные разности потенциалов одновременно для 6-ти соседних контуров. Контактные разности потенциалов полупроводников и металлов меняют работу выхода под воздействием электрического заряда земли. Таким образом, в каждом контуре гексагональной топологии будут формироваться временные токовые асимметрии, которые влияют как на соседние контуры, так и на систему в целом для заявленных целей.
Экспериментом подтверждены следующее характеристики источника электрической энергии электрического поля земли на контактной разности потенциалов:
1. 48 электрических контуров, последовательно соединённых по диагонали гексагональной топологии.
2. “-“ проводник заземлён.
3. Выходное напряжение системы 12,3 вольт.
4. Выходное напряжение системы изменяется на уровне десяток милливольт при повороте системы (изменении ориентации) в магнитном поле земли.
5 Выходное напряжение системы изменяется на уровне сотен милливольт при приближении к системе человека (электрического заряда)
5. Ток короткого замыкания 13.2 мкА.
6. Ток короткого замыкания стабилен при непрерывном измерении в течении нескольких дней.
7. Добавление нового ряда по диагонали в гексагональной топологии увеличивает пропорционально ток короткого замыкания без значительного увеличения выходного напряжения.
Таким образом можно представить рабочие характеристики принципиально нового источника электрической энергии поля земли:
– 48×48 электрических контуров гексагональной топологии.
– “-“ проводник заземлён.
– Выходное напряжение системы 12,3 вольт неограниченное время.
– Ток короткого замыкания системы 6.3 mА неограниченное время.
А ЧТО ГОВОРИТ НАУКА???
1. Известно, что земля совместно с ионосферой являются гигантским сферическим конденсатором, который заряжен и создает электрическое поле вокруг нас. Напряженность электрического поля у поверхности Земли составляет 120-150 В/м. Практическое использование такой напряжённости для генерации электричества достаточно проблематично. Таким образом, электрическое поле Земли на сегодняшний день остаётся скорее объектом научного интереса, чем источником энергии для практических целей.
2. Известно, что в условиях термодинамического равновесия контактная разность потенциалов не может быть источником энергии. Контактная разность потенциалов не создаёт направленного движения электрических зарядов. В условиях термодинамического равновесия электроны распределяются таким образом, чтобы уравновесить разницу в работах выхода, и в результате ток не течёт. Энергия, необходимая для поддержания этого равновесия, поступает из тепловой энергии окружения, но она не может быть использована для выполнения работы. Тока короткого замыкания не должно быть.
3. Cогласно закону Вольта, сумма контактных разностей потенциалов в замкнутой цепи в условиях термодинамического равновесия должна равняться нулю. Это означает, что если мы просто соединим несколько термопар, не создавая никаких внешних воздействий (таких как температурный градиент), то результирующая ЭДС будет равна нулю. Напряжения на выходе практически не должно быть.
4. Известны способы обойти ограничение закона Вольта в условиях термодинамического равновесия – это создание неравновесных условий в системе. Например, можно использовать материалы, которые меняют свою работу выхода под воздействием внешних факторов, таких как магнитное поле, электрические заряды или свет. В любом случае сумма контактных разностей потенциалов 48 контуров системы в условиях термодинамического равновесия не может превышает уровень миливольт.
5. Существуют магнитные полупроводники — у которых меняется проводимость в зависимости от магнитного поля. Только это не относится к обычным диодам. Таким образом – изменения выходного напряжения в системе, состоящей из обычных диодов в зависимости от направления поля земли не должно быть.
6. Несмотря на то, что температура всех компонентов схемы может казаться одинаковой, микроразницы температур могут существовать. Эти микроразницы вызывают дополнительные термо-ЭДС, влияющие на показания вольтметра.
7. Напряжение, вырабатываемой контактной разностью потенциалов металлических проводников не достаточно для “открытия” диодов, тока короткого замыкания не должно быть.
8. Если система ведёт себя, как отдельно заряженный конденсатор – ток короткого замыкания должен уменьшаться со временем.
9. Неисправность вольтметра может привести к таким показаниям.
10. Среда с высоким уровнем электростатических зарядов влияет на показания вольтметра. Электростатические поля создают дополнительные напряжения, которые суммируются с контактной разностью потенциалов.
11. В схемах, содержащих повторяющиеся элементы, возможны эффекты взаимодействия между компонентами. Взаимная ёмкость может вносить вклад в общее напряжение, регистрируемое вольтметром.